[1] 四川省科技厅科技成果转移转化示范项目,20ZHSF0257,2020.01-2021.12
[2] 某军品生产废水处理工程,2019.7-2021.7
[3] 自然科学基金面上项目,51878423,2019.01-2022.12
[4] 四川省杰出青年科技人才,2019.01-2021.12
[5] 四川省重点研发项目,2019YFG0314,2019.01-2020.12
[6] 环保部内江驻点项目,2019.01-2021.12
[7] DDNP生产废水处理技术开发及工程化应用,2017-2022
[8] 十大体育外围平台网址创新火花项目,2019.01-2020.12
[9] 环保部专项计划项目(西南地区子课题),2111101-06,2016-2019
[10] 十大体育外围平台网址高分子材料工程国家重点实验室青年人才项目,2018-2019
[11] 非常规油气田压裂废液处理技术研究,2017-2018
[12] 国家自然科学基金(青年基金),21207094,2013.1-2015.12
[13] 十大体育外围平台网址优秀青年学者科研基金,2015SCU04A09,2015.1-2017.12
[14] 第六批中国博士后科学基金特别资助,2013T60854,2013.3-2014.3
[15] 哈尔滨工业大学城市水环境国家重点实验室开放基金,QA201320,2013.7-2015.6
[16] 第63批中国博士后科学基金面上项目(一等),海天水务博士后工作站,2018M631077,2018.5-2019.5
[17] 第52批中国博士后科学基金面上项目(二等),2012M521694,2012.9-2013.9
[18] 四川省博士后特别资助(一等),2012.12-2014.12
[19] 十大体育外围平台网址博士后基金及启动经费,2011.12-2013.12
[20] 十大体育外围平台网址人才引进启动基金,2013.09-2017.09
【代表性论文】
[1] Z.L. Wu, Y.P. Wang, Z.K. Xiong*, Z.M. Ao, S.Y. Pu, G. Yao, B. Lai*, Core-shell magnetic Fe3O4@Zn/Co-ZIFs to activate peroxymonosulfate for highly efficient degradation of carbamazepine. Appl. Catal. B: Environ. 277 (2020) 119136.
[2] Z.Y. Shen, H.Y. Zhou, Z.C. Pan, Y. Guo, Y. Yuan*, G. Yao, B. Lai*, Degradation of atrazine by Bi2MoO6 activated peroxymonosulfate under visible light irradiation, J. Hazard. Mater., 400 (2020) 123187.
[3] M.J. Xu, H.Y. Zhou, Z.L. Wu, N.W. Li*, Z.K. Xiong, G. Yao, B. Lai*, Efficient degradation of sulfamethoxazole by NiCo2O4 modified expanded graphite activated peroxymonosulfate: Characterization, mechanism and degradation intermediates, J. Hazard. Mater., 399 (2020) 123103.
[4] F. Liu, H.Y. Zhou, Z.C. Pan, Y. Liu*, G. Yao, Y. Guo, B. Lai*, Degradation of sulfamethoxazole by cobalt-nickel powder composite catalyst coupled with peroxymonosulfate: performance, degradation pathways and mechanistic consideration, J. Hazard. Mater., 400 (2020) 123322.
[5] Y.H. Zhang, L. Wang, Z.K. Xiong, W.G. Wang, D. Zheng, T. He, Y. Liu, Y. Ran, L.W. Deng*, B. Lai*, Removal of antibiotic resistance genes from post-treated swine wastewater by mFe/nCu system, Chem. Eng. J., 400 (2020) 125953.
[6] J.J. You, W.Y. Sun, S.J. Shu, Z.M. Ao, C. Liu*, G. Yao, B. Lai*, Degradation of bisphenol A by peroxymonosulfate activated with oxygen vacancy modified nano-NiO-ZnO composite oxides: A typical surface-bound radical system, Chem. Eng. J., 400 (2020) 125915.
[7] J.L. Peng, H.Y. Zhou, W. Liu, Z.M. Ao, H.D. Ji, Y. Liu*, S.J. Su, G. Yao, B. Lai*, Insights into heterogeneous catalytic activation of peroxymonosulfate by natural chalcopyrite: pH-dependent radical generation, degradation pathway and mechanism, Chem. Eng. J., 397 (2020) 125387.
[8] Y.L. He, J.L. Zhang, H.Y. Zhou, G. Yao, B. Lai*, Synergistic multiple active species for the degradation of sulfamethoxazole by peroxymonosulfate in the presence of CuO-Fe0, Chem. Eng. J., 380 (2020) 122568.
[9] Y.C. Hong, H.Y. Zhou, Z.K. Xiong*, Y. Liu, G. Yao, B. Lai*, Heterogeneous activation of peroxymonosulfate by CoMgFe-LDO for degradation of carbamazepine: Efficiency, mechanism and degradation pathways, Chem. Eng. J., (2020) 123604.
[10] Y.J. Li, J. Li, Y.T. Pan, Z.K. Xiong*, G. Yao, R.Z. Xie, B. Lai*, Peroxymonosulfate activation on FeCo2S4 modified g-C3N4 (FeCo2S4-CN): Mechanism of singlet oxygen evolution for nonradical efficient degradation of sulfamethoxazole, Chem. Eng. J., 384 (2020) 123361.
[11] J.L. Zhang, Z.K. Xiong, J. Wei*, Y.H. Song, Y.Z. Ren, D.Y. Xu, B. Lai*, Catalytic ozonation of penicillin G using cerium-loaded natural zeolite (CZ): Efficacy, mechanisms, pathways and toxicity assessment, Chem. Eng. J., 383 (2020) 123144.
[12] H.Y. Zhou, L.D. Lai, Y.J. Wan, Y.L. He, G. Yao, B. Lai*, Molybdenum disulfide (MoS2): A versatile activator of both peroxymonosulfate and persulfate for the degradation of carbamazepine, Chem. Eng. J., 384 (2020) 123264.
[13] L.D. Lai, H.Y. Zhou, H. Zhang, Z.M. Ao, Z.C. Pan, Q.X. Chen, Z.K. Xiong*, G. Yao, B. Lai*, Activation of peroxydisulfate by natural titanomagnetite for atrazine removal via free radicals and high-valent iron-oxo species, Chem. Eng. J., 387 (2020) 124165.
[14] Z.K. Xiong, H. Zhang, W.C. Zhang, B. Lai*, G. Yao, Removal of nitrophenols and their derivatives by chemical redox: A review, Chem. Eng. J., 359 (2019) 13-31.
[15] J.F. Yan, J. Li, J.L. Peng, H. Zhang, Y.H. Zhang, B. Lai*, Efficient degradation of sulfamethoxazole by the CuO@Al2O3 (EPC) coupled PMS system: optimization, degradation pathways and toxicity evaluation, Chem. Eng. J., 359 (2019) 1097-1110.
[16] F.Z. Ji, H. Zhang, X.X. Wei, Y.H. Zhang, B. Lai*, Efficient degradation of atrazine by Co-NZ catalyst prepared by electroless plating in the presence of peroxymonosulfate: Characterization, performance and mechanistic consideration, Chem. Eng. J., 359 (2019) 1316-1326.
[17] J. Li, J.F. Yan, G. Yao, Y.H., Zhang, B. Lai*, Improvement the degradation of atrazine in aqueous solution by CuFe2O4 as both particle electrode and catalyst for persulfate activation, Chem. Eng. J., 361 (2019) 1317-1332.
[18] M.J. Xu, J. Li, Y. Yan, X.G. Zhao, J.F. Yan, Y.H. Zhang, B. Lai*, X. Chen, L.P. Song, Catalytic degradation of sulfamethoxazole through peroxymonosulfate activated with expanded graphite loaded CoFe2O4 particles, Chem. Eng. J., 369 (2019) 403-413.
[19] R.J. Zhang, Y.J. Wan, J.L. Peng, G. Yao, Y.H. Zhang, B. Lai*, Efficient degradation of atrazine by LaCoO3/Al2O3 catalyzed peroxymonosulfate: Performance, degradation intermediates and mechanism, Chem. Eng. J., 372 (2019) 796-808.
[20] J.Y. Cao, L.D. Lai, B. Lai*, G. Yao, X. Chen, L.P. Song, Degradation of tetracycline by peroxymonosulfate activated with zero-valent iron: performance, intermediates, toxicity and mechanism, Chem. Eng. J., 364 (2019) 45-56.
[21] Y.C. Hong, J.L. Peng, X.G. Zhao, Y. Yan, B. Lai*, G. Yao, Efficient degradation of atrazine by CoMgAl layered double oxides catalyzed peroxymonosulfate: Optimization, degradation pathways and mechanism, Chem. Eng. J., 370 (2019) 354-363
[22] Y.J. Li, X.G. Zhao, Y. Yan, J.F. Yan, Y.T. Pan, Y.H. Zhang, B. Lai*, Enhanced sulfamethoxazole degradation by peroxymonosulfate activation with sulfide-modified microscale zero-valent iron (S-mFe0): Performance, mechanisms, and the role of sulfur species, Chem. Eng. J., 376 (2019) 121302.
[23] J. Li, Y.J. Wan, Y.J. Li, G. Yao, B. Lai*, Surface Fe(III)/Fe(II) cycle promoted the degradation of atrazine by peroxymonosulfate activation in the presence of hydroxylamine, Applied Catalysis B: Environmental, 256 (2019) 117782.
[24] Z.K. Xiong, B. Lai*, P. Yang, Insight into a highly efficient electrolysis-ozone process for N,N -dimethylacetamide degradation: Quantitative analysis of the role of catalytic ozonation, fenton-like and peroxone reactions, Water Res., 140 (2018) 12-23.
[25] J.F. Yan, J.L. Peng, L.D. Lai, F.Z. Ji, Y.H. Zhang, B. Lai*, Q.X. Chen, G. Yao, X. Chen, L.P. Song, Activation CuFe2O4 by Hydroxylamine for Oxidation of Antibiotic Sulfametheoxazole, Environ. Sci. Tech., 52 (2018) 14302-14310.
[26] J. Li, M.J. Xu, G. Yao, B. Lai*, Enhancement of the degradation of atrazine through CoFe2O4 activated peroxymonosulfate (PMS) process: kinetic, degradation intermediates, and toxicity evaluation, Chem. Eng. J., 348 (2018) 1012-1024.
[27] L.D. Lai, H.Y. Zhou, B. Lai*, Heterogeneous degradation of bisphenol A by peroxymonosulfate activated with vanadium-titanium magnetite: Performance, transformation pathways and mechanism. Chem. Eng. J., 349 (2018) 633-645.
[28] J. Li, Y. Ren, L.D. Lai, B. Lai*, Electrolysis assisted persulfate with annular iron sheet as anode for the enhanced degradation of 2, 4-dinitrophenol in aqueous solution. J. Hazard. Mater., 344 (2018) 778-787.
[29] L.D. Lai, J.F. Yan, J. Li, B. Lai*, Co/Al2O3-EPM as peroxymonosulfate activator for sulfamethoxazole removal: Performance, biotoxicity, degradation pathways and mechanism. Chem. Eng. J., 343 (2018) 676-688.
[30] J.Y. Cao, Z.K. Xiong, B. Lai*, Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: adsorption, oxidation and reduction. Chem. Eng. J., 343 (2018) 492-499.
[31] J.L. Peng, X.H. Lu, X. Jiang, Y.H. Zhang, G. Yao, B. Lai*, Degradation of atrazine by persulfate activation with copper sulfide (CuS): Kinetics study, degradation pathways and mechanism. Chem. Eng. J., 354 (2018) 740-752.
[32] J. Li, Q. Liu, Q.Q. Ji, B. Lai*, Degradation of p-nitrophenol (PNP) in aqueous solution by Fe0-PM-PS system through response surface methodology (RSM). Appl. Catal. B: Environ. 200 (2017) 633-646.
[33] J. Li, Y. Ren, F.Z. Ji, B. Lai*, Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chem. Eng. J., 324 (2017) 63-73.
[34] Y. Ren, J.H. Yang, J. Li, B. Lai*, Strengthening the reactivity of Fe0/(Fe/Cu) by premagnetization: implications for selectivity and rate for nitrate reduction. Chem. Eng. J., 330 (2017) 813-822.
[35] Y. Yuan, B. Lai*, Y.Y. Tang, Combined Fe0/air and Fenton process for the treatment of dinitrodiazophenol (DDNP) industry wastewater. Chem. Eng. J., 283 (2016) 1514-1521.
[36] Y. Ren, Y. Yuan, B. Lai*, Y.X. Zhou, J.L. Wang, Treatment of reverse osmosis (RO) concentrate by the combined Fe/Cu/air and Fenton process (1stFe/Cu/air-Fenton-2ndFe/Cu/air). J. Hazard. Mater., 302 (2016) 36-44.
[37] Q.Q. Ji, Y. Yuan, B. Lai*, P. Yang, Y.X. Zhou, Pretreatment of ultra-high concentration wastewater from halogen-free flame retardant resin manufacturing by chemical precipitation, reduction and oxidation. J. Hazard. Mater., 308 (2016) 276-284.
[38] Z.K. Xiong, Y. Yuan, B. Lai*, P. Yang, Y.X. Zhou, Degradation of p-nitrophenol (PNP) in aqueous solution by a novel micro-size Fe0/O3 process (mFe0/O3): Optimization, kinetic, performance and mechanism, Chem. Eng. J. 302 (2016) 137-145.
[39] Z.K. Xiong, B. Lai*, P. Yang, Y.X. Zhou, J.L. Wang, S.P. Fang, Comparative study on the reactivity of Fe/Cu bimetallic particles and zero valent iron (ZVI) under different conditions of N2, air or without aeration. J. Hazard. Mater., 297 (2015) 261-268.
[40] B. Lai*, Y.H. Zhang, Z.Y. Chen, P. Yang, Y.X. Zhou, J.L. Wang, Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron-copper (Fe/Cu) bimetallic particles. Appl. Catal. B: Environ. 144 (2014) 816-830.
[41] B. Lai*, Y.H. Zhang, R. Li, Y.X. Zhou, J.L. Wang, Influence of operating temperature on the reduction of high concentration p-nitrophenol (PNP) by zero valent iron (ZVI). Chem. Eng. J., 249 (2014) 143–152.
[42] B. Lai*, Z.Y. Chen, Y.X. Zhou, P. Yang, J.L. Wang, Z.Q. Chen. Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI). J. Hazard. Mater., 250-251 (2013) 220-228.
[43] B. Lai, Y.X. Zhou*, H.K. Qin, C.Y. Wu, C.C. Pang, Y. Lian, J.X. Xu. Pretreatment of wastewater from acrylonitrile-butadiene-styrene (ABS) resin manufacturing by internal microelectrolysis. Chem. Eng. J., 179 (2012) 1-7.
[44] B. Lai*, Y.X. Zhou, P. Yang, J.L. Wang, J.H. Yang, H.Q. Li. Removal of FePO4 and Fe3(PO4)2 crystals on the surface of passive fillers in Fe0/GAC reactor using the acclimated bacteria. J. Hazard. Mater., 241-242 (2012) 241-251.
[45] B. Lai*, Y.X. Zhou, P. Yang. Ttreatment of wastewater from acrylonitrile-butadiene-atyrene (ABS) resin manufacturing by Fe0/GAC-ABFB. Chem. Eng. J., 200-202 (2012) 10-17.
|